19 research outputs found

    Criteria for the use of omics-based predictors in clinical trials.

    Get PDF
    The US National Cancer Institute (NCI), in collaboration with scientists representing multiple areas of expertise relevant to 'omics'-based test development, has developed a checklist of criteria that can be used to determine the readiness of omics-based tests for guiding patient care in clinical trials. The checklist criteria cover issues relating to specimens, assays, mathematical modelling, clinical trial design, and ethical, legal and regulatory aspects. Funding bodies and journals are encouraged to consider the checklist, which they may find useful for assessing study quality and evidence strength. The checklist will be used to evaluate proposals for NCI-sponsored clinical trials in which omics tests will be used to guide therapy

    Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration

    Full text link
    Abstract High-throughput ‘omics’ technologies that generate molecular profiles for biospecimens have been extensively used in preclinical studies to reveal molecular subtypes and elucidate the biological mechanisms of disease, and in retrospective studies on clinical specimens to develop mathematical models to predict clinical endpoints. Nevertheless, the translation of these technologies into clinical tests that are useful for guiding management decisions for patients has been relatively slow. It can be difficult to determine when the body of evidence for an omics-based test is sufficiently comprehensive and reliable to support claims that it is ready for clinical use, or even that it is ready for definitive evaluation in a clinical trial in which it may be used to direct patient therapy. Reasons for this difficulty include the exploratory and retrospective nature of many of these studies, the complexity of these assays and their application to clinical specimens, and the many potential pitfalls inherent in the development of mathematical predictor models from the very high-dimensional data generated by these omics technologies. Here we present a checklist of criteria to consider when evaluating the body of evidence supporting the clinical use of a predictor to guide patient therapy. Included are issues pertaining to specimen and assay requirements, the soundness of the process for developing predictor models, expectations regarding clinical study design and conduct, and attention to regulatory, ethical, and legal issues. The proposed checklist should serve as a useful guide to investigators preparing proposals for studies involving the use of omics-based tests. The US National Cancer Institute plans to refer to these guidelines for review of proposals for studies involving omics tests, and it is hoped that other sponsors will adopt the checklist as well.http://deepblue.lib.umich.edu/bitstream/2027.42/134536/1/12916_2013_Article_1104.pd

    Clinical and Genomic Risk to Guide the Use of Adjuvant Therapy for Breast Cancer

    Get PDF
    BACKGROUND The use of adjuvant chemotherapy in patients with breast cancer may be guided by clinicopathological factors and a score based on a 21-gene assay to determine the risk of recurrence. Whether the level of clinical risk of breast cancer recurrence adds prognostic information to the recurrence score is not known. METHODS We performed a prospective trial involving 9427 women with hormone-receptor–positive, human epidermal growth factor receptor 2–negative, axillary node–negative breast cancer, in whom an assay of 21 genes had been performed, and we classified the clinical risk of recurrence of breast cancer as low or high on the basis of the tumor size and histologic grade. The effect of clinical risk was evaluated by calculating hazard ratios for distant recurrence with the use of Cox proportional-hazards models. The initial endocrine therapy was tamoxifen alone in the majority of the premenopausal women who were 50 years of age or younger. RESULTS The level of clinical risk was prognostic of distant recurrence in women with an intermediate 21-gene recurrence score of 11 to 25 (on a scale of 0 to 100, with higher scores indicating a worse prognosis or a greater potential benefit from chemotherapy) who were randomly assigned to endocrine therapy (hazard ratio for the comparison of high vs. low clinical risk, 2.73; 95% confidence interval [CI], 1.93 to 3.87) or to chemotherapy plus endocrine (chemoendocrine) therapy (hazard ratio, 2.41; 95% CI, 1.66 to 3.48) and in women with a high recurrence score (a score of 26 to 100), all of whom were assigned to chemoendocrine therapy (hazard ratio, 3.17; 95% CI, 1.94 to 5.19). Among women who were 50 years of age or younger who had received endocrine therapy alone, the estimated (±SE) rate of distant recurrence at 9 years was less than 5% (≤1.8±0.9%) with a low recurrence score (a score of 0 to 10), irrespective of clinical risk, and 4.7±1.0% with an intermediate recurrence score and low clinical risk. In this age group, the estimated distant recurrence at 9 years exceeded 10% among women with a high clinical risk and an intermediate recurrence score who received endocrine therapy alone (12.3±2.4%) and among those with a high recurrence score who received chemoendocrine therapy (15.2±3.3%). CONCLUSIONS Clinical-risk stratification provided prognostic information that, when added to the 21-gene recurrence score, could be used to identify premenopausal women who could benefit from more effective therapy

    Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer

    Get PDF
    BACKGROUND The recurrence score based on the 21-gene breast cancer assay predicts chemotherapy benefit if it is high and a low risk of recurrence in the absence of chemotherapy if it is low; however, there is uncertainty about the benefit of chemotherapy for most patients, who have a midrange score. METHODS We performed a prospective trial involving 10,273 women with hormone-receptor–positive, human epidermal growth factor receptor 2 (HER2)–negative, axillary node–negative breast cancer. Of the 9719 eligible patients with follow-up information, 6711 (69%) had a midrange recurrence score of 11 to 25 and were randomly assigned to receive either chemoendocrine therapy or endocrine therapy alone. The trial was designed to show noninferiority of endocrine therapy alone for invasive disease–free survival (defined as freedom from invasive disease recurrence, second primary cancer, or death). RESULTS Endocrine therapy was noninferior to chemoendocrine therapy in the analysis of invasive disease–free survival (hazard ratio for invasive disease recurrence, second primary cancer, or death [endocrine vs. chemoendocrine therapy], 1.08; 95% confidence interval, 0.94 to 1.24; P=0.26). At 9 years, the two treatment groups had similar rates of invasive disease–free survival (83.3% in the endocrine-therapy group and 84.3% in the chemoendocrine-therapy group), freedom from disease recurrence at a distant site (94.5% and 95.0%) or at a distant or local–regional site (92.2% and 92.9%), and overall survival (93.9% and 93.8%). The chemotherapy benefit for invasive disease–free survival varied with the combination of recurrence score and age (P=0.004), with some benefit of chemotherapy found in women 50 years of age or younger with a recurrence score of 16 to 25. CONCLUSIONS Adjuvant endocrine therapy and chemoendocrine therapy had similar efficacy in women with hormone-receptor–positive, HER2-negative, axillary node–negative breast cancer who had a midrange 21-gene recurrence score, although some benefit of chemotherapy was found in some women 50 years of age or younger

    Prospective Validation of a 21-Gene Expression Assay in Breast Cancer

    Get PDF
    Prior studies with the use of a prospective–retrospective design including archival tumor samples have shown that gene-expression assays provide clinically useful prognostic information. However, a prospectively conducted study in a uniformly treated population provides the highest level of evidence supporting the clinical validity and usefulness of a biomarker

    Criteria for the use of omics-based predictors in clinical trials: Explanation and elaboration

    Get PDF
    High-throughput 'omics' technologies that generate molecular profiles for biospecimens have been extensively used in preclinical studies to reveal molecular subtypes and elucidate the biological mechanisms of disease, and in retrospective studies on clinical specimens to develop mathematical models to predict clinical endpoints. Nevertheless, the translation of these technologies into clinical tests that are useful for guiding management decisions for patients has been relatively slow. It can be difficult to determine when the body of evidence for an omics-based test is sufficiently comprehensive and reliable to support claims that it is ready for clinical use, or even that it is ready for definitive evaluation in a clinical trial in which it may be used to direct patient therapy. Reasons for this difficulty include the exploratory and retrospective nature of many of these studies, the complexity of these assays and their application to clinical specimens, and the many potential pitfalls inherent in the development of mathematical predictor models from the very high-dimensional data generated by these omics technologies. Here we present a checklist of criteria to consider when evaluating the body of evidence supporting the clinical use of a predictor to guide patient therapy. Included are issues pertaining to specimen and assay requirements, the soundness of the process for developing predictor models, expectations regarding clinical study design and conduct, and attention to regulatory, ethical, and legal issues. The proposed checklist should serve as a useful guide to investigators preparing proposals for studies involving the use of omics-based tests. The US National Cancer Institute plans to refer to these guidelines for review of proposals for studies involving omics tests, and it is hoped that other sponsors will adopt the checklist as well. © 2013 McShane et al.; licensee BioMed Central Ltd

    Cancer Diagnostics

    No full text

    Clinical assay development program.

    No full text
    corecore